Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Discov Technol ; 17(2): 197-202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30156162

RESUMO

BACKGROUND: In medicinal chemistry, the discovery of small organic molecules that can be optimized and lead to a future drug capable of effectively modulating the biological activity of a therapeutic target remains a major challenge. Because of the harmful secondary effects of synthesized therapeutic molecules, the development of research has been oriented towards phytomedicines. Phenolic compounds from medicinal plants are constantly explored for new therapeutic use. METHODS: In this paper, we studied interactions between main enzymes responsible for causing type 2 diabetes mellitus (T2DM) and phenolic compounds from nettle (Urtica dioica L.) using molecular Docking with Molecular Operating Environment Software (MOE). RESULTS: Docking results show a common molecule (secoisolariciresinol), which may form stable complexes with depeptidyl peptidase 4 (DPP-4), alpha-amylase and beta-glucosidase with binding energy of -7.04732084 kcal/mol, -3.82946181 kcal/mol and -4.16077089 kcal/mol respectively. Besides secoisolariciresinol, other phenolic compounds give better docking score than the original co-crystallized ligand for alpha-amylase (PDB ID 5U3A) and beta-glucosidase (PDB ID 1OGS). CONCLUSION: The obtained results are promising for the discovery of new alpha-amylase and betaglucosidase inhibitors. This study also confirms the folk use of nettle as antidiabetic agent.


Assuntos
Butileno Glicóis/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Urtica dioica/química , Glicemia/metabolismo , Butileno Glicóis/química , Butileno Glicóis/uso terapêutico , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/enzimologia , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/ultraestrutura , Descoberta de Drogas/métodos , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Lignanas/química , Lignanas/uso terapêutico , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Amilases/ultraestrutura , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , beta-Glucosidase/ultraestrutura
2.
Nat Struct Mol Biol ; 26(12): 1151-1157, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792450

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-LewisX, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7-3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/química , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Sítios de Ligação , Configuração de Carboidratos , Microscopia Crioeletrônica , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/ultraestrutura , Hemaglutinação por Vírus , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Ácidos Siálicos/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Relação Estrutura-Atividade
3.
Biochem Biophys Res Commun ; 222(3): 833-8, 1996 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-8651931

RESUMO

Dipeptidyl peptidase IV (DPP IV/CD26) belongs to a non-classical subfamily of serine-proteases. Sequence comparisons have identified Asp599, Ser624, Asp657, Asp702, and His734 as highly conserved residues of mouse DPP IV. We previously reported the identification of Ser624, Asp702 and His734 as the catalytic triad of mouse DPP IV (David, F., Bernard, A. M., Pierres, M., and Marguet, D. (1993) J Biol. Chem. 268, 17247-17252). Using site-directed mutagenesis, we have shown here that substitution of Asp599 for Ala (D599A) specifically decreases the cell-surface expression of DPP IV in stably transfected mouse fibroblasts. The D599A mutant remained as a high mannose immature glycoprotein and was rapidly degraded. This retention/degradation process correlates with the generation of a beta strand in the C-terminal region of DPP IV as shown by three dimensional computer modeling. Our results suggest that conserved residue Asp599 is important for the proper folding, glycosylation and transport of mouse DPP IV.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/química , Compartimento Celular , Membrana Celular/enzimologia , Dipeptidil Peptidase 4/ultraestrutura , Glicosilação , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...